๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
ํ”„๋กœ๊ทธ๋ž˜๋ฐ

์„ ํ˜•๋ฐฉ์ •์‹์˜ ๋ฐ˜๋ณตํ•ด๋ฒ• Iterative Methods for Solving Linear Systems

by ๐“ƒ๐’ถ๐“ƒ๐’ถ๏ฝก 2015. 3. 11.

Ax=b ์—์„œ A์˜ ๋Œ€๊ฐ ํ–‰๋ ฌ์— 0์ด ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š์€ ๊ฒฝ์šฐ, ํ•ด x๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์—๋Š” ํฌ๊ฒŒ ์ง์ ‘๋ฒ•(direct method)์™€ ๋ฐ˜๋ณต๋ฒ•(iterative method)์ด ์žˆ๋‹ค. ์ „์ž๋Š” ๋‹จ ํ•œ๋ฒˆ์˜ ํ–‰๋ ฌ ๊ณ„์‚ฐ์œผ๋กœ ์ •ํ™•ํ•œ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ˜๋ฉด, ํ›„์ž๋Š” ํ–‰๋ ฌ ๊ณ„์‚ฐ์„ ๋ฐ˜๋ณตํ•˜์—ฌ ๊ทผ์‚ฌํ•ด(approximate solution)๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํ–‰๋ ฌ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘๋‹ค๋ฉด ์ „์ž๊ฐ€ ํšจ๊ณผ์ ์ด์ง€๋งŒ ํ–‰๋ ฌ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋ฉด ํ›„์ž๊ฐ€ ํšจ๊ณผ์ ์ด๋‹ค.

 

์ง์ ‘๋ฒ•์˜ ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ€์šฐ์Šค ์†Œ๊ฑฐ๋ฒ•(Gauss elimination method)์„ ๋“ค ์ˆ˜๊ฐ€ ์žˆ๋‹ค๋ฉด, ๋ฐ˜๋ณต๋ฒ•์œผ๋กœ๋Š” ์•ผ์ฝ”๋น„ ๊ธฐ๋ฒ•(Jacobi iteration method)์„ ๋“ค ์ˆ˜ ์žˆ๋‹ค.

 

 

 

Jacobi Iteration


 

์•ผ์ฝ”๋น„ ๋ฐฉ๋ฒ•์€ ๋‘ ๊ฐ€์ง€์˜ ๊ฐ€์ •์œผ๋กœ๋ถ€ํ„ฐ ์ถœ๋ฐœํ•œ๋‹ค. (1) ํ•ด๋‹น ๋ฐฉ์ •์‹์ด ์œ ์ผํ•œ ํ•ด(unique solution)๋ฅผ ๊ฐ–๊ณ  ์žˆ์œผ๋ฉฐ, (2) ๊ณ„์ˆ˜ ํ–‰๋ ฌ(coefficient matrix) A์˜ ๋Œ€๊ฐ ์„ฑ๋ถ„์ด 0์„ ๊ฐ–๊ณ  ์žˆ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

 

์ด ๊ธฐ๋ฒ•์˜ ๊ธฐ๋ณธ๊ฐœ๋…์€ ํ–‰๋ ฌ A๋ฅผ ๋Œ€๊ฐ ์„ฑ๋ถ„ D์™€ ๊ทธ ๋‚˜๋จธ์ง€ R๋กœ ๋ถ„ํ•ดํ•˜์—ฌ Dxk+1 = b-Rxk ํ˜•ํƒœ์˜ ๋ฐ˜๋ณต์‹์œผ๋กœ ์ „ํ™˜ํ•˜์—ฌ ํ•ด x๋ฅผ ๋ฐ˜๋ณต๊ณ„์‚ฐ์„ ํ†ตํ•ด ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ฐ˜๋ณต๊ณ„์‚ฐ์€ ์ดˆ๊ธฐ์— x๋ฅผ ์ž„์˜์˜ ๊ฐ’์œผ๋กœ ์ถ”์ •ํ•˜์—ฌ ๋ฐ˜๋ณต์‹์˜ ์šฐ๋ณ€์— ๋Œ€์ž…ํ•˜์—ฌ ์ขŒ๋ณ€์˜ x๋ฅผ ๊ตฌํ•˜๊ณ , ์ด ๊ฐ’์„ ๋‹ค์‹œ ๋ฐ˜๋ณต์‹์˜ ์šฐ๋ณ€์— ๋Œ€์ž…ํ•˜์—ฌ ์ƒˆ๋กœ์šด x๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ˜๋ณต๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋ฐ˜๋ณต๊ณ„์‚ฐ์€ x๊ฐ€ ์›ํ•˜๋Š” ํ—ˆ์šฉ์˜ค์ฐจ(allowable error) ๋ฒ”์œ„์— ๋“ค์–ด์˜ค๊ฒŒ ๋˜๋ฉด ๋ฉˆ์ถ”๊ฒŒ ๋œ๋‹ค.

 

 

 

 

์‹์„ ๊ฐ ๋ณ€์ˆ˜์— ๋Œ€ํ•˜์—ฌ ์ •๋ฆฌํ•œ ๋‹ค์Œ, ์ดˆ๊ธฐ์ž„์˜๊ฐ’(initial approximation)์„ ์ถ”์ •ํ•˜์—ฌ ๊ฐ ์‹์— ๋Œ€์ž…ํ•˜๋ฉด ๊ฐ ๋ณ€์ˆ˜๋Š” ๊ฒฐ๊ณผ๊ฐ’์„ ์ƒˆ๋กœ ์–ป๊ฒŒ ๋œ๋‹ค. ์ด ๊ฐ’๋“ค์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋Œ€์ž…ํ•˜๋ฉด(iteration) ํ•ด๊ฐ€ ํŠน์ • ๊ฐ’์— ์ˆ˜๋ ด(converge)ํ•˜๊ฒŒ ๋œ๋‹ค.

์•ผ์ฝ”๋น„ ๊ธฐ๋ฒ•์€ ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฐ˜๋ณต๋ฒ•์œผ๋กœ์จ, ๋ฐ˜๋ณต๊ณ„์‚ฐ์˜ ํšŒ์ˆ˜๋ฅผ ์ค„์—ฌ ์‹ ์†ํ•˜๊ฒŒ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์œ ํ˜•์˜ ๋ณ€ํ˜•๋œ ๋ฐ˜๋ณต๋ฒ•๋“ค์ด ์†Œ๊ฐœ๋˜์–ด ์žˆ๋‹ค. ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ณ€ํ˜•๋œ ๋ฐ˜๋ณต๋ฒ•์œผ๋กœ ๊ฐ€์šฐ์Šค-์ž์ด๋ธ๋ฒ•(Gauss-Seidel Method)์ด ์žˆ๋‹ค.

 

 

 

Gauss-Seidel Method


 

์•ผ์ฝ”๋น„ ๊ธฐ๋ฒ•์€ n๋ฒˆ์งธ ์ถ”์ •(nth approximation)์—์„œ ์–ป์–ด์ง„ ๊ฐ xi์˜ ๊ฐ’์ด (n+1)๋ฒˆ์งธ ์ถ”์ •์„ ํ•˜๊ธฐ ์ „๊นŒ์ง€ ๊ทธ๋Œ€๋กœ ์ €์žฅ๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ€์šฐ์Šค-์ž์ด๋ธ ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ์—๋Š” ์ƒˆ๋กœ์šด xi๊ฐ€ ์–ป์–ด์ง€์ž๋งˆ์ž ๋‹ค์Œ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์— ์ƒˆ๋กœ ์–ป์–ด์ง„ ๊ฐ’์„ ๋„ฃ์–ด ๊ณ„์‚ฐํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ํ•ด์˜ ์ˆ˜๋ ด ์†๋„๊ฐ€ ๋” ๋นจ๋ผ์ง€๊ฒŒ ๋œ๋‹ค.


๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์–ด๋Š ๋ฐฉ์ •์‹์—๋‚˜ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. Divergence๊ฐ€ 0์ธ(์ˆ˜๋ ดํ•˜๋Š”) ๋ฐฉ์ •์‹์—๋งŒ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค.
๊ณ„์ˆ˜ ํ–‰๋ ฌ A๊ฐ€ ๋Œ€๊ฐ์„  ์ง€๋ฐฐ ํ–‰๋ ฌ(strictly diagonally dominant matrix)์ผ ๋•Œ์—๋งŒ ์œ„ ๋‘๊ฐ€์ง€ ๋ฐฉ๋ฒ•์—์„œ ์ˆ˜๋ ดํ•ด๊ฐ€ ๋‚˜์˜จ๋‹ค. ์ฆ‰, ๊ณ„์ˆ˜ ํ–‰๋ ฌ์˜ ๋Œ€๊ฐ ์„ฑ๋ถ„์˜ ์ ˆ๋Œ€๊ฐ’์ด ๊ฐ™์€ ํ–‰์˜ ๋ชจ๋“  ์„ฑ๋ถ„์˜ ์ ˆ๋Œ€๊ฐ’์˜ ํ•ฉ๋ณด๋‹ค ํด ๋•Œ๋งŒ ์ˆ˜๋ ดํ•œ๋‹ค.

 

Definition of Strictly Diagonally Dominant Matrix

An (nxn) matrix A is strictly diagonally dominant if the absolute value of each entry on the main diagonal is greater than the sum of the absolute values of the other entries in the same row. That is,

 

 


์œ„์— ๋”ฐ๋ผ์„œ ์„ ํ˜•์—ฐ๋ฆฝ๋ฐฉ์ •์‹์—์„œ ๊ณ„์ˆ˜ ํ–‰๋ ฌ์ด ๋Œ€๊ฐ์„  ์ง€๋ฐฐ ํ–‰๋ ฌ์ผ ๊ฒฝ์šฐ ์–ด๋– ํ•œ ์ดˆ๊ธฐ๊ฐ’์— ๋Œ€ํ•ด์„œ๋„ ์•ผ์ฝ”๋น„์™€ ๊ฐ€์šฐ์Šค-์ž์ด๋ธ๋ฒ•์œผ๋กœ ์ˆ˜๋ ดํ•ด๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์•„๋ž˜์˜ theorem์ด ์ •๋ฆฌ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ์ถฉ๋ถ„์กฐ๊ฑด์ด์ง€ ํ•„์š”์กฐ๊ฑด์ด ์•„๋‹ˆ๋‹ค. ๋ฐ˜๋“œ์‹œ ๋Œ€๊ฐ์„  ์ง€๋ฐฐ ํ–‰๋ ฌ์ด ์•„๋‹ˆ์–ด๋„ ํŠน์ • ์ดˆ๊ธฐ๊ฐ’์— ๋Œ€ํ•˜์—ฌ ์ˆ˜๋ ดํ•ด๊ฐ€ ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋‹ค.

 

 

Convergence of the Jacobi and Gauss-Seidel Methods

 

If A is strictly diagonally dominant, then the system of linear equations given by Ax=b has a unique solution to which the Jacobi method and the Gauss-Seidel method will converge for any initial approximation.

 

 

http://college.cengage.com/mathematics/larson/elementary_linear/5e/students/ch08-10/chap_10_2.pdf